240 research outputs found

    Where is my pain?

    Get PDF
    n/

    Controlling attention to nociceptive stimuli with working memory

    Get PDF
    Background: Because pain often signals the occurrence of potential tissue damage, a nociceptive stimulus has the capacity to involuntarily capture attention and take priority over other sensory inputs. Whether distraction by nociception actually occurs may depend upon the cognitive characteristics of the ongoing activities. The present study tested the role of working memory in controlling the attentional capture by nociception. Methodology and Principal Findings: Participants performed visual discrimination and matching tasks in which visual targets were shortly preceded by a tactile distracter. The two tasks were chosen because of the different effects the involvement of working memory produces on performance, in order to dissociate the specific role of working memory in the control of attention from the effect of general resource demands. Occasionally (i.e. 17% of the trials), tactile distracters were replaced by a novel nociceptive stimulus in order to distract participants from the visual tasks. Indeed, in the control conditions (no working memory), reaction times to visual targets were increased when the target was preceded by a novel nociceptive distracter as compared to the target preceded by a frequent tactile distracter, suggesting attentional capture by the novel nociceptive stimulus. However, when the task required an active rehearsal of the visual target in working memory, the novel nociceptive stimulus no longer induced a lengthening of reaction times to visual targets, indicating a reduction of the distraction produced by the novel nociceptive stimulus. This effect was independent of the overall task demands. Conclusion and Significance: Loading working memory with pain-unrelated information may reduce the ability of nociceptive input to involuntarily capture attention, and shields cognitive processing from nociceptive distraction. An efficient control of attention over pain is best guaranteed by the ability to maintain active goal priorities during achievement of cognitive activities and to keep pain-related information out of task settings

    The pain matrix reloaded: a salience detection system for the body

    Get PDF
    Neuroimaging and neurophysiological studies have shown that nociceptive stimuli elia salience detection system for the bodycit responses in an extensive cortical network including somatosensory, insular and cingulate areas, as well as frontal and parietal areas. This network, often referred to as the "pain matrix", is viewed as representing the activity by which the intensity and unpleasantness of the perception elicited by a nociceptive stimulus are represented. However, recent experiments have reported (i) that pain intensity can be dissociated from the magnitude of responses in the "pain matrix", (ii) that the responses in the "pain matrix" are strongly influenced by the context within which the nociceptive stimuli appear, and (iii) that non-nociceptive stimuli can elicit cortical responses with a spatial configuration similar to that of the "pain matrix". For these reasons, we propose an alternative view of the functional significance of this cortical network, in which it reflects a system involved in detecting, orienting attention towards, and reacting to the occurrence of salient sensory events. This cortical network might represent a basic mechanism through which significant events for the body's integrity are detected, regardless of the sensory channel through which these events are conveyed. This function would involve the construction of a multimodal cortical representation of the body and nearby space. Under the assumption that this network acts as a defensive system signaling potentially damaging threats for the body, emphasis is no longer on the quality of the sensation elicited by noxious stimuli but on the action prompted by the occurrence of potential threats

    Distraction from pain and executive functioning: an experimental investigation of the role of inhibition, task switching and working memory

    Get PDF
    Although many studies have investigated the effectiveness of distraction as a method of pain control, the cognitive processes by which attentional re-direction is achieved, remain unclear. In this study the role of executive functioning abilities (inhibition, task switching and working memory) in the effectiveness of distraction is investigated. We hypothesized that the effectiveness of distraction in terms of pain reduction would be larger in participants with better executive functioning abilities. Ninety-one undergraduate students first performed executive functioning tasks, and subsequently participated in a cold pressor task (CPT). Participants were randomly assigned to (1) a distraction group, in which an attention-demanding tone-detection task was performed during the CPT, or (2) a control group, in which no distraction task was performed. Participants in the distraction group reported significantly less pain during the CPT, but the pain experience was not influenced by executive functioning abilities. However, the performance on the distraction task improved with better inhibition abilities, indicating that inhibition abilities might be important in focussing on a task despite the pain

    Investigating the spatial characteristics of the crossmodal interaction between nociception and vision using gaze direction

    Get PDF
    The present study investigated the influence of nociceptive stimuli on visual stimuli processing according to the relative spatial congruence between the two stimuli of different sensory modalities. Participants performed temporal order judgments on pairs of visual stimuli, one presented near the hand on which nociceptive stimuli were occasionally applied, the other one either to its left or to its right. The visual hemifield in which the stimulated hand and the near visual stimulus appeared was manipulated by changing gaze direction. The stimulated hemibody and the stimulated visual hemifield were therefore either congruent or incongruent, in terms of anatomical locations. Despite the changes in anatomical congruence, judgments were always biased in favor of the visual stimuli presented near the stimulated hand. This indicates that nociceptive-visual interaction may rely on a realignment of the respective initial anatomical representations of the somatic and retinotopic spaces toward an integrated, multimodal representation of external space

    An investigation of perceptual biases in complex regional pain syndrome

    Get PDF
    Patients with complex regional pain syndrome (CRPS) report cognitive difficulties, affecting the ability to represent, perceive and use their affected limb. Moseley, Gallace & Spence (2009) observed that CRPS patients tend to bias the perception of tactile stimulation away from the pathological limb. Interestingly, this bias was reversed when CRPS patients were asked to cross their arms, implying that this bias is embedded in a complex representation of the body that takes into account the position of body-parts. Other studies have failed to replicate this finding (Filbrich et al., 2017) or have even found a bias in the opposite direction (Sumitani et al., 2007). Moreover, perceptual biases in CRPS patients have not often been compared to these of other chronic pain patients. Chronic pain patients are often characterized by an excessive focus of attention for bodily sensations. We might therefore expect that non-CRPS pain patients would show a bias towards instead of away from their affected limb. The aim of this study was to replicate the study of Moseley, Gallace & Spence (2009) and to extend it by comparing perceptual biases in a CRPS group with two non-CRPS pain control groups (i.e., chronic unilateral wrist and shoulder pain patients). In a temporal order judgment (TOJ) task, participants reported which of two tactile stimuli, one applied to either hand at various intervals, was perceived as occurring first. TOJs were made, either with the arms in a normal (uncrossed) position, or with the arms crossed over the body midline. We found no consistent perceptual biases in either of the patient groups and in either of the conditions (crossed/uncrossed). Individual differences were large and might, at least partly, be explained by other variables, such as pain duration and temperature differences between the pathological and non-pathological hand. Additional studies need to take these variables into account by, for example, comparing biases in CRPS (and non-CRPS) patients in an acute versus a chronic pain state

    Exploration of nociceptive cortical processing with steady-state evoked potentials

    Get PDF
    The periodic presentation of a sensory stimulus induces, at certain frequencies of stimulation, a sustained electroencephalographic response known as steady-state evoked potentials (SS-EP). SS-EPs are considered to reflect entrainment of cortical sensory networks resonating at the frequency of stimulation. In the present study we characterize and compare SS-EPs elicited by the selective electrical activation of nociceptive Aδ-fibers and non-nociceptive Aβ-fibers. Nine subjects took part in the experiment. Ten second trains of nociceptive (intra-epidermal electrical stimulation) and non-nociceptive (transcutaneous electrical stimulation) stimuli were applied to the left and right hand in separate blocks. Trains consisted of 0.5 ms constant-current pulses modulated at 3, 7, 13, 23 and 43 Hz. Consistent nociceptive and non-nociceptive SS-EPs were recorded at all stimulation frequencies. Whereas non-nociceptive SS-EPs were maximal over the parietal region contralateral to the stimulated side, nociceptive SS-EPs were maximal at the vertex and symmetrically distributed over both hemispheres, thus indicating that the two responses reflect the entrainment of distinct neuronal populations. The recording of nociceptive and non-nociceptive somatosensory SS-EPs offers a unique opportunity to study the cortical representation of nociception and touch in humans
    • …
    corecore